激情欧美一区二区三区,国产精品日韩在线一区,日本另类视频,国产欧美日韩亚洲一区二区三区

熱門搜索:多功能儀表、測溫傳感器、電能質(zhì)量分析、邊緣計算網(wǎng)關(guān)、能效管理平臺
產(chǎn)品分類

Product category

技術(shù)文章 / article 您的位置:網(wǎng)站首頁 > 技術(shù)文章 > 淺析有源濾波器在礦區(qū)配電網(wǎng)中的應用研究與選型

淺析有源濾波器在礦區(qū)配電網(wǎng)中的應用研究與選型

更新時間:2023-11-22  點擊次數(shù): 1036次

摘要:針對目前有源濾波器應用于礦區(qū)諧波治理時電網(wǎng)頻率適應能力較低的問題,針對定采樣點數(shù)字控制系統(tǒng)提出了一種具有頻率自適應能力的諧振控制策略。該策略不僅可以實現(xiàn)對電網(wǎng)頻率波動的自適應,提高濾波器補償效果,而且不需要在線對控制器參數(shù)進行更新,算法簡單。*后通過實驗驗證了所提方法的可行性和有效性。

關(guān)鍵詞:礦區(qū)諧波治理;有源濾波器;頻率波動;自適應

0引言

隨著電力電子技術(shù)的快速發(fā)展,以晶閘管為代表的相控整流裝置在礦業(yè)生產(chǎn)中得到越來越廣泛的應用。然而,相控整流器在運行時會在電網(wǎng)中產(chǎn)生大量諧波,尤其是礦區(qū)電網(wǎng)通常位于相對偏遠的地區(qū),電網(wǎng)等效阻抗較大,諧波電流的注入會導致機端電壓的進一步畸變,嚴重影響到礦區(qū)電網(wǎng)的質(zhì)量,威脅到敏感用電負荷的安全運行,給整個礦區(qū)的生產(chǎn)帶來安全隱患。

采用安裝無源濾波器的方法一定程度上可實現(xiàn)濾波的作用,但是其濾波效果會受到電網(wǎng)等值阻抗等參數(shù)的影響,此外,在參數(shù)選擇不合適時可能引發(fā)諧振,導致濾波器燒毀。與無源濾波器相比,以IGBT為開關(guān)元件的有源濾波器(APF)具有多種優(yōu)點,比如補償效果不受電路參數(shù)影響、可選次諧波濾除等,近年來在礦區(qū)電網(wǎng)中的應用越來越廣泛。

為了提高有源濾波器對諧波指令的跟蹤精度,目前通常采用基于內(nèi)模原理的諧振控制器。諧振控制器具有對諧振頻率處交流信號無靜差跟蹤的能力,然而,實際中電網(wǎng)的頻率并非固定不變,而是在50Hz(對我國電網(wǎng)來講)附近波動,通常波動范圍為±0.5Hz。實際中電網(wǎng)頻率的波動將導致諧振控制器的頻率與實際諧波頻率不一致,降低控制器的跟蹤能力,進而影響到有源濾波器的諧波補償效果。為此,本文針對定采樣點APF控制系統(tǒng),提出了一種具有電網(wǎng)頻率自適應能力的諧振控制器數(shù)字算法。由于充分利用了定采樣點控制系統(tǒng)的特點,在實現(xiàn)頻率自適應的同時,保證了諧振控制算法中參數(shù)的常數(shù)化,即無需在電網(wǎng)頻率變化時對控制參數(shù)進行調(diào)整,不僅算法簡單,而且增強了APF對電網(wǎng)頻率的魯棒性。*后通過實驗驗證了改進控制策略的可行性和有效性。

1APF控制系統(tǒng)的數(shù)學模型與比例系數(shù)設計

三相APF的主電路及自然坐標系下的電流控制原理如圖1所示。三相MPR控制器的輸出首先與對應相的電網(wǎng)電壓疊加在一起構(gòu)成電網(wǎng)電壓前饋,再和三角載波進行比較生產(chǎn)各開關(guān)管的PWM信號。

假設三相系統(tǒng)對稱,此時可將三相系統(tǒng)等效為3個獨立的單相系統(tǒng)進行建模,以A相為例,此時根據(jù)圖1可得自然坐標系下APF的輸出電流控制框圖。

如圖2所示

image.png

圖1APF系統(tǒng)中電流諧振控制原理

uga、ugb、ugc,三相電源電壓Lf、Rf,并網(wǎng)濾波電感及其等值電阻iga、igb、igc,APF的三相輸出電流Udc、直流側(cè)電壓MPR、多諧振控制器iga、ref、igb、ref、igc、ref,APF的三相輸出電流給定,其中包含了控制直流側(cè)電壓平均值恒定所需的有功電流分量和諧波電流指令。

image.png

圖2自然坐標系下APF輸出電流控制框圖GMPR(s)

GMPR(s):多諧振控制器的傳遞函數(shù),Gd(s):數(shù)字控制和PWM調(diào)制引入的延時傳遞函數(shù),通常取1.5個開關(guān)周期GL(s)被控對象傳遞函數(shù),即APF輸出濾波電感

image.png

式中Ts———采樣周期。

本文APF在1個基波周期的采樣點數(shù)為200,對應的采樣周期Ts=0.0001s。

多諧振控制器的主要作用是在相應諧振頻率下提供較大增益,使得系統(tǒng)的穩(wěn)態(tài)誤差較小,為了保證系統(tǒng)在暫態(tài)過程中的響應速度,實際中應將多諧振控制器與比例控制器并聯(lián)使用。由于系統(tǒng)的響應速度,即系統(tǒng)的開環(huán)穿越頻率基本不受多諧振控制器的影響,其主要受比例系數(shù)的影響,因此在設計系統(tǒng)開環(huán)穿越頻率時可以不考慮多諧振控制器,僅僅考慮比例控制器的作用,根據(jù)圖2可得此時系統(tǒng)的開環(huán)傳遞函數(shù)為:

image.png

式中Kp——比例系數(shù)。

對于數(shù)字控制的電力電子變流器,綜合考慮系統(tǒng)的穩(wěn)定裕度和動態(tài)響應速度,通常將系統(tǒng)的開環(huán)穿越頻率設置為采樣頻率的1/10。文中APF系統(tǒng)的主要參數(shù):

image.png

根據(jù)以上參數(shù),結(jié)合式(1)、式(2)和式(3)可知,將系統(tǒng)的開環(huán)穿越頻率設置在1kHz時,應取比例系數(shù)Kp=3.1,此時系統(tǒng)的開環(huán)bode圖如圖3所示。

image.png

圖3僅比例控制器下APF開環(huán)控制系統(tǒng)的bode圖

2傳統(tǒng)和改進選振控制器的離散域描述及其電網(wǎng)頻率魯棒性分析

(1)傳統(tǒng)PR控制器的離散域描述及其電網(wǎng)頻率魯棒性分析

單一的諧振控制器能夠在其諧振頻率下提供較大的增益可大幅提高控制系統(tǒng)對諧振頻率下交流信號的跟蹤能力。其在,s域下可表示為:

image.png

在數(shù)字控制系統(tǒng)中,首先要將式(4)所描述的PR控制算法進行離散化。需要注意的是,不同的離散化算法對PR控制器的性能會有較大影響,比如,采用后向差分或雙線性變換對式(4)進行離散化時會導致諧振峰偏移,且這種影響隨著PR控制器諧振頻率的增大而增大,因此,實際中多采用預修正的Tustin變換對式(4)進行離散化,從而避免離散化后PR控制器諧振峰的偏移。采用預修正Tustin變換時s域到z域的映射關(guān)系。

image.pngimage.png

將式(5)代入到式(4)可得傳統(tǒng)諧振控制器的離散域描述

image.png

式(6)和式(7)表明,傳統(tǒng)的諧振控制器離散城算法中包含了采樣周期T、以及諧振頻率,對于定采樣頻率APF控制系統(tǒng)來講,由于T是不變的,PR控制器的諧振頻率只與有關(guān)。如果在控制中采用恒定的,當實際中電網(wǎng)頻率出現(xiàn)波動時,兩者將出現(xiàn)偏差,從而降低諧振控制器的跟蹤性能。以諧振頻率為7次諧波為例,傳統(tǒng)PR的幅頻特性如圖4所示。可見當電網(wǎng)頻率為理想的50Hz時控制器在350Hz處具有非常大的增益,說明此時PR控制器對7次諧波的跟蹤能力較強,但是當電網(wǎng)頻率在+0.5Hz范圍內(nèi)波動時,將導致7次諧波的頻率在+3.5Hz范圍內(nèi)波動。由圖4中諧振頻率附近的放大圖可知。隨著電網(wǎng)頻率的波動,PR控制器的增益將發(fā)生劇烈變化,比如在346.5Hz及353.5Hz處的增益下降至接近0。說明此時APF系統(tǒng)對7次諧波的跟蹤能力大幅下降。可見傳統(tǒng)的PR控制器對電網(wǎng)頻率的魯棒性較低,電網(wǎng)頻率微小的波動可能導致APF補償效果大幅下降。

image.png

(2)改進PR控制器的離散域描述及其電網(wǎng)頻率魯棒性分析

目前并網(wǎng)變流器的數(shù)字控制系統(tǒng)主要有定采樣頻率控制系統(tǒng)和定采樣點數(shù)控制系統(tǒng)2種。對于定采樣點數(shù)控制系統(tǒng)來講,即使電網(wǎng)頻率發(fā)生波動,通過鎖相環(huán)的調(diào)節(jié)作用也可保證1個工頻周期的采樣點數(shù)不變。為了充分利用固定基波周期采樣點數(shù)控制系統(tǒng)的特點,此處引入改進型PR控制器,其離散域描述為:

image.png

本文中APF的控制周期為10kHz,1個工頻周期的采樣點數(shù)n=200。式(8)表明,在定采樣點數(shù)控制系統(tǒng)中,改進后PR控制器數(shù)字化算法中的所有參數(shù)均為常數(shù),即當電網(wǎng)頻率存在波動時,不必根據(jù)變化后的電網(wǎng)頻率對PR控制器的諧振頻率進行頻繁的調(diào)節(jié),大大簡化了控制系統(tǒng)的結(jié)構(gòu),實現(xiàn)了PR控制器諧振頻率與電網(wǎng)頻率的自適應。

以7次諧波為例,電網(wǎng)頻率在±0.5Hz范圍內(nèi)波動時PR控制器幅頻特性的變化如圖5所示,可見當電網(wǎng)頻率為50Hz,即7次諧波頻率為350Hz時PR控制器的諧振頻率為350Hz;當電網(wǎng)頻率為49.5Hz,即7次諧波頻率為346.5Hz時PR控制器的諧振頻率自動減小至346.5Hz;當電網(wǎng)頻率為50.5Hz,即7次諧波頻率為353.5Hz時PR控制器的諧振頻率則自動增大至353.5Hz。可見電網(wǎng)頻率的波動不會影響到PR控制器在7次諧波處的增益,即不會影響APF系統(tǒng)對7次諧波的跟蹤能力,說明改進的PR控制器對電網(wǎng)頻率的魯棒性較強,電網(wǎng)頻率的波動不會影響APF系統(tǒng)的諧波補償效果。

image.png

圖5改進PR控制器的電網(wǎng)頻率魯棒性分析

3實驗驗證

為了進一步驗證上述理論分析的正確性,搭建了額定電流為100A的APF實驗平臺,系統(tǒng)開關(guān)頻率為10kHz,即系統(tǒng)在1個周波內(nèi)的采樣點數(shù)為200由于實驗條件限制,實驗中無法對電網(wǎng)頻率進行修改,鑒于正常工況下電網(wǎng)頻率并不是嚴格的50Hz.因此采用對比的方法驗證改進諧振控制策略的有效性。將傳統(tǒng)PR控制諧振頻率設定為固定的50Hz時的實驗結(jié)果如圖6所示,由圖6可見補償后的網(wǎng)側(cè)電流雖得到一定程度的改善,但是仍含有較大的諧波,通過將示波器數(shù)據(jù)導出至MATLAB后分析表明,此時網(wǎng)側(cè)電流的THD為8.3%。作為對比,相同工況下采用改進PR控制后的實驗結(jié)果如圖7所示,由圖7可見補償后的網(wǎng)側(cè)電流質(zhì)量得到明顯提高,說明具有頻率自適應能力的諧振控制算法對給定指令的跟蹤能力較強,此時網(wǎng)側(cè)電流的THD為3.7%。

上述仿真和實驗結(jié)果驗證了改進PR控制算法的有效性。

image.png

4 安科瑞APF有源濾波器產(chǎn)品選型

4.1產(chǎn)品特點

(1)DSP+FPGA控制方式,響應時間短,全數(shù)字控制算法,運行穩(wěn)定;

(2)一機多能,既可補諧波,又可兼補無功,可對2~51次諧波進行全補償或特定次諧波進行補償;

(3)具有完善的橋臂過流保護、直流過壓保護、裝置過溫保護功能;

(4)模塊化設計,體積小,安裝便利,方便擴容;

(5)采用7英寸大屏幕彩色觸摸屏以實現(xiàn)參數(shù)設置和控制,使用方便,易于操作和維護;

(6)輸出端加裝濾波裝置,降低高頻紋波對電力系統(tǒng)的影響;

(7)多機并聯(lián),達到較高的電流輸出等級;

4.2型號說明

image.png

4.3尺寸說明


image.png

4.4產(chǎn)品實物展示

image.png

ANAPF有源濾波器

5安科瑞智能電容器產(chǎn)品選型

5.1產(chǎn)品概述

AZC/AZCL系列智能電容器是應用于0.4kV、50Hz低壓配電中用于節(jié)省能源、降低線損、提高功率因數(shù)和電能質(zhì)量的新一代無功補償設備。它由智能測控單元,晶閘管復合開關(guān)電路,線路保護單元,兩臺共補或一臺分補低壓電力電容器構(gòu)成。可替代常規(guī)由熔絲、復合開關(guān)或機械式接觸器、熱繼電器、低壓電力電容器、指示燈等散件在柜內(nèi)和柜面由導線連接而組成的自動無功補償裝置。具有體積更小,功耗更低,維護方便,使用壽命長,可靠性高的特點,適應現(xiàn)代電網(wǎng)對無功補償?shù)母咭蟆?/span>

AZC/AZCL系列智能電容器采用定式LCD液晶顯示器,可顯示三相母線電壓、三相母線電流、三相功率因數(shù)、頻率、電容器路數(shù)及投切狀態(tài)、有功功率、無功功率、諧波電壓總畸變率、電容器溫度等。通過內(nèi)部晶閘管復合開關(guān)電路,自動尋找適宜投入(切除)點,實現(xiàn)過零投切,具有過壓保護、缺相保護、過諧保護、過溫保護等保護功能。

5.2型號說明

image.png

AZC系列智能電容器選型:

image.png

AZCL系列智能電容器選型:

image.png

5.3產(chǎn)品實物展示

image.png

AZC系列智能電容模塊AZCL系列智能電容模塊

image.png

安科瑞無功補償裝置智能電容方案

6結(jié)語

本文首先建立了三相APF的數(shù)學模型,并對傳統(tǒng)PR控制器的電網(wǎng)頻率魯棒性進行了分析,針對傳統(tǒng)PR控制器電網(wǎng)頻率魯棒性較低的問題和固定基波周期采樣點數(shù)控制系統(tǒng)的特點引入了改進的PR控制器離散化算法,該算法不僅實現(xiàn)了PR控制算法中參數(shù)的常數(shù)化,避免了電網(wǎng)頻率變化時對控制算法的頻繁調(diào)節(jié),而且對電網(wǎng)頻率的變化具有自適應性,使得PR控制器的諧振頻率能夠自動追蹤電網(wǎng)頻率的變化,從而減小電網(wǎng)頻率波動對APF補償性能的影響。大幅提高諧振控制器對電網(wǎng)頻率的魯棒性,改善礦“區(qū)電網(wǎng)的質(zhì)量,實驗結(jié)果驗證了改進PR控制算法的有效性。

參考文獻

[1]唐筠.基于SVPWM算法的三電平有源電力濾波器的電壓空間矢量調(diào)制策略[J].煤礦機械,2017,38(8):14-127.

[2]侯梁,李博森,井敬.自適應有源濾波器在礦區(qū)配電網(wǎng)中的應用研究[J].煤礦機械,2020,41(01):145-148.DOI:10.13436/j.mkjx.202001049.

[3]安科瑞企業(yè)微電網(wǎng)設計與應用手冊2022.05版.

  • 聯(lián)系電話電話021-69153965
  • 傳真傳真021-69153965
  • 郵箱郵箱2881392111@qq.com
  • 地址公司地址上海市嘉定區(qū)育綠路253號
© 2025 版權(quán)所有:安科瑞電子商務(上海)有限公司   備案號:滬ICP備18001305號-1   sitemap.xml   管理登陸   技術(shù)支持:儀表網(wǎng)       
  • 微信聯(lián)系我們
  • 充電樁禁止非法改裝

聯(lián)


激情欧美一区二区三区,国产精品日韩在线一区,日本另类视频,国产欧美日韩亚洲一区二区三区
欧美激情免费观看| 在线播放豆国产99亚洲| 亚洲承认在线| 国产精品久久久久久久久免费| 中文国产成人精品| 国产乱理伦片在线观看夜一区| 欧美精品久久久久久久免费观看| 中日韩美女免费视频网址在线观看| 国产精品ⅴa在线观看h| 欧美激情bt| 亚洲在线观看视频网站| 国产日韩一区二区| 国产精品国产三级国产专区53 | 亚洲一区精品在线| 国产麻豆精品久久一二三| 欧美激情小视频| 亚洲一区二区久久| 国模私拍一区二区三区| 国产精品美女久久久久av超清 | 欧美激情第五页| 一区二区精品| 亚洲青涩在线| 国产精品一区二区在线观看网站 | 老色鬼久久亚洲一区二区| 亚洲区一区二| 国产欧美 在线欧美| 欧美日韩影院| 久久精品国产欧美激情| 亚洲欧洲精品天堂一级| 狠狠爱www人成狠狠爱综合网 | 99精品国产福利在线观看免费| 在线 亚洲欧美在线综合一区| 欧美女同视频| 欧美精品电影| 欧美一级艳片视频免费观看| 在线日本成人| 亚洲第一中文字幕| 国产精品入口日韩视频大尺度| 欧美日韩免费在线观看| 久久黄色影院| 久久九九有精品国产23| 99精品热6080yy久久| 国产一区二区三区久久精品| 国产精品一页| 欧美激情精品久久久久久变态| 另类天堂av| 欧美一区二区三区精品| 亚洲精品视频啊美女在线直播| 91久久久一线二线三线品牌| 国产女人水真多18毛片18精品视频| 国产精品色网| 欧美日本精品| 欧美午夜精品久久久久免费视| 久久影院亚洲| 欧美国产在线电影| 久久免费少妇高潮久久精品99| 久久资源在线| 亚洲欧美日韩视频二区| 日韩视频免费观看高清在线视频| 亚洲精品一区二区三区福利 | 国产精品久久久久久久久久免费看| 免费看亚洲片| 欧美激情亚洲视频| 久久噜噜噜精品国产亚洲综合| 久久综合色综合88| 久久精品国产亚洲5555| 可以免费看不卡的av网站| 欧美一区二区三区电影在线观看| 在线视频精品| 欧美亚洲三级| 模特精品裸拍一区| 久久影院午夜论| 欧美日韩大片一区二区三区| 麻豆免费精品视频| 欧美日韩国产高清| 欧美激情一区二区三级高清视频| 欧美视频一区二区| 欧美日韩免费观看一区=区三区| 国产精品福利在线观看| 欧美日韩在线第一页| 国产亚洲精品7777| 国产亚洲欧洲| 亚洲精品资源| 亚洲免费电影在线| 欧美一区二区女人| 欧美国产高潮xxxx1819| 女生裸体视频一区二区三区| 欧美三级电影大全| 国产精品a久久久久久| 国产亚洲一区二区精品| 国产日韩专区在线| 亚洲精选成人| 一区二区三区回区在观看免费视频| 性8sex亚洲区入口| 欧美乱妇高清无乱码| 欧美极品在线观看| 国产日韩一区欧美| 韩国v欧美v日本v亚洲v| 99国产精品一区| 久久久久一本一区二区青青蜜月| 久久久国产精品一区| 欧美日韩福利视频| 欧美视频在线观看免费网址| 国产综合网站| 在线观看欧美日韩| 午夜免费在线观看精品视频| 欧美成人免费在线| 欧美精品一区三区| 黑人一区二区| 亚洲精品美女91| 欧美精品国产精品| 一区视频在线播放| 怡红院av一区二区三区| 亚洲高清不卡av| 性欧美精品高清| 欧美日韩国产精品一卡| 欧美体内she精视频| 亚洲电影免费观看高清| 亚洲人成精品久久久久| 久久国产精品色婷婷| 欧美色另类天堂2015| 国产精品久久久亚洲一区| 亚洲高清在线精品| 日韩系列在线| 欧美大成色www永久网站婷| 国产婷婷成人久久av免费高清| 伊人成综合网伊人222| 亚洲欧美日韩系列| 欧美日韩精品一区二区三区| 国产精品国产a| 99精品国产高清一区二区| 久久亚洲一区二区三区四区| 欧美激情导航| 激情五月婷婷综合| 亚洲精品影院在线观看| 另类欧美日韩国产在线| 国产一区二区三区久久久久久久久| 黄色一区二区三区四区| 亚洲欧美中文日韩在线| 欧美三级在线视频| 国内精品美女av在线播放| 亚洲欧美激情视频| 欧美偷拍一区二区| 国内精品久久久久久影视8| 欧美一区在线直播| 国产欧美日韩中文字幕在线| 亚洲电影免费在线观看| 久久漫画官网| 国产在线观看一区| 99国产精品一区| 欧美日韩成人在线视频| 亚洲国产网站| 欧美成人网在线| 国产一区二区av| 欧美一区日韩一区| 国产日韩精品综合网站| 亚洲欧洲一级| 欧美激情在线狂野欧美精品| 亚洲人成在线播放网站岛国| 猛干欧美女孩| 国产精品一区二区久久久| 亚洲欧美日本国产有色| 国产精品一区二区视频| 亚洲人午夜精品免费| 欧美国产亚洲精品久久久8v| 亚洲国内高清视频| 欧美精品在线免费| 狠狠网亚洲精品| 久久婷婷影院| 亚洲国内精品| 欧美精品aa| 精品999在线观看| 欧美大片在线观看一区二区| 亚洲精品久久久蜜桃| 欧美日本乱大交xxxxx| 好吊妞这里只有精品| 久久午夜色播影院免费高清| 在线国产精品一区| 欧美日本国产在线| 91久久精品国产91久久性色tv| 欧美国产日韩一区二区| 日韩视频―中文字幕| 欧美午夜在线视频| 91久久综合| 欧美日韩一区二区在线| 亚洲少妇在线| 国产婷婷色一区二区三区在线| 夜夜嗨av一区二区三区网站四季av | 久久久人人人| 91久久精品日日躁夜夜躁欧美| 欧美精品在线一区二区三区| 在线观看国产欧美| 欧美精品在线观看| 亚洲一卡二卡三卡四卡五卡| 国产精品尤物| 欧美高清视频在线| 国产精品视频观看| 亚洲免费观看高清完整版在线观看| 欧美视频国产精品| 一本色道久久综合|